MEASUREMENTS/REGULATIONS

for Thermoelements

A member of the Morgan Crucible Company Plc

Pyrosales Pty Ltd 4 Wordie Place Padstow NSW 2211 Australia Ph: 61 2 9790 1988 Fax: 61 2 9790 1040 Email: sales@pyrosales.com.au Website: www.pyrosales.com.au

MEASUREMENTS, CONTROLS, REGULATIONS

Ubiquitous technologies with versatile requirements

Whether in research and development, in modern industrial production or even in the home – there is no area in which measurements, control processes and regulations are not required. Today, there are constantly increasing demands for data accuracy. At the same time, the operating conditions for measuring and regulation instruments are becoming consistently stricter, resulting from, for example, temperature change endurance or aggressive mediums.

Owing to their competent high-tech material, technical ceramics made by W. HALDENWANGER have a tradition of performing strikingly well in a variety of extreme applications. This brochure shows a selection of possible applications within measurement and control technology and delivers important information for engineering and construction of ceramic components.

Aluminium oxide ceramic is commonly used to protect delicate sensors which are in constant contact with, for example, corrosion and other damaging processing substances.

Plugs for control lines in nuclear power plants are subject to high radiation; here, synthetic materials were not, or only partially resistant. However, our Alsint 99.7 components are resistant. These Alsint 99.7 components are also faultless in radioactive contaminated areas. As a result of the extreme working temperatures, modern measuring methods such as DTA and DTC require ceramic sheath tubes and other ceramic components – specifically ultrapure Alsint 99.7 is used with DTA and DTC. Laser tubes made of Alsint 99.7 are also used to control the motion sequences of the He-Ne Lasers in harsh operating conditions.

Sheath tubes made of various ceramic materials such as Alsint 99.7, Pythagoras, Sillimantin 60 NG, Sillimantin 60, SiC, Halsic-R and Halsic-I, as well as insulation rods made of Alsint 99.7 or Pythagoras, are applied in the field of temperature measurement.

Within the processes of controlled engineering, corrosion and abrasion, in connection with high temperatures, can result in extreme operational demands which metallic regulation carrying capacities can not withstand. In such cases, Alsint 99.7 or Zirconia components ensure reliable operations.

Technical ceramics reveals its strengths when other materials have long failed to fulfil necessary requirements. The diversity of design and utilization are therefore nearly limitless.

A member of the Morgan Crucible Company Plc

ALSIN	Т 99.7	PYTHA	GORAS	SILLIMANTIN 60			
Type C 799 according to DIN EN 60672 Al ₂ O ₃ -content 99.7 %		Type C 610 accordir Al ₂ O ₃ -content approx. 6	ng to DIN EN 60672 0 %, Alkali-content 3 %	Type C 530 according to DIN EN 60672 AI_2O_3 -content 73 – 75 %			
Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Outer / Inner Ø in mm Ø in mm		Outer / Inner Ø in mm			
0.8 x 0.3	12.0 x 8.0	0.8 x 0.3	14.0 x 10.0	15 x 10			
1.3 x 0.7	12.7 x 8.9	1.3 x 0.7	15.0 x 10.0	20 x 15			
1.6 x 1.0	14.0 x 10.0	1.6 x 1.0	15.0 x 11.0	22 x 17			
1.8 x 1.2	15.0 x 10.0	1.8 x 1.2	16.0 x 12.0	24 x 19			
2.0 x 1.0	17.0 x 12.0	2.0 x 1.0	17.0 x 12.0	26 x 18			
2.7 x 1.7	17.0 x 13.0	2.7 x 1.7	17.0 x 13.0	28 x 22			
3.0 x 2.0	17.5 x 11.1	3.0 x 2.0	17.5 x 11.1	30 x 23			
4.0 x 2.0	20.0 x 15.0	4.0 x 2.0	20.0 x 15.0				
5.0 x 3.0	24.0 x 18.0	5.0 x 3.0	24.0 x 19.0				
6.0 x 4.0	25.4 x 19.1	6.0 x 4.0	25.4 x 19.1				
8.0 x 5.0	26.0 x 20.0	8.0 x 5.0	26.0 x 18.0				
9.0 x 6.0	28.0 x 22.0	9.0 x 6.0	26.0 x 20.0				
9.6 x 6.4	30.0 x 23.0	10.0 x 6.0	28.0 x 22.0				
10.0 x 6.0		10.0 x 7.0	30.0 x 23.0				
10.0 x 7.0		12.0 x 8.0					
max. length 3500 mm depending on outer Ø		max. length 3500 mm	depending on outer Ø	max. length 3500 mm depending on outer Ø			

SILICON	CARBIDE	HALS	SIC-R	HALSIC-I			
fine and course structure, SiC-content approx. 70 and 90 %, clay-bound		According to recrystallized SiC, S	DIN EN 12212 SiC-content ≥ 99 %	According to DIN EN 12212, reaction- bound, Si-infiltrated SiC, SiC-concentration approx. 90 %, Si-free content ca.10 %			
Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm			
17 x 12	30 x 23	20 x 10	34 x 24	20 x 13			
20 x 12	33 x 28	22 x 12	35 x 25	22 x 15			
20 x 15	35 x 27	25 x 15	38 x 25	25 x 18			
22 x 17	40 x 32	30 x 15	40 x 30	27 x 20			
24 x 19	45 x 25	30 x 20	45 x 35	30 x 20			
26 x 18	45 x 35	32 x 22	50 x 38	45 x 35			
26 x 20	50 x 25						
max. length 2000 mm depending on outer Ø		max. length 2100 mm	depending on outer Ø	max. length 2100 mm depending on outer Ø			

Dimensions not included in the table can be custom made upon request.

All of the following tubes are available: both ends open, one end closed, both ends open with flange, one end closed with flange. Tolerances are in compliance with DIN 40 680. Customized tolerances upon request.

2-BORE AND 4-BORE INSULATION RODS

Tools available

Insulation rods made of Alsint 99.7 or Pythagoras are used to insulate inserted thermal wires. In accordance with DIN 43725, Pythagoras insulation rods can be heated to temperatures up to 2732°F/1500°C. For higher temperatures, we recommend Alsint 99.7 insulation rods.

ALSINT 99.7 TYPE C 799							PYTHAGORAS TYPE C 610					
2	2-bore rod	S	2	4-bore rod	S	2-bore rods			4-bore rods			
	0 0						0 0					
* OØ/BØ	O Ø/B Ø	O Ø/B Ø	* 0 Ø/B Ø	OØ/BØ	O Ø/B Ø	* 0 Ø/B Ø	O Ø/B Ø	O Ø/B Ø	* 0 Ø/B Ø	OØ/BØ	O Ø/B Ø	
* O Ø/B Ø 1.2 0.2 1.2 0.3 1.4 0.3 1.7 0.3 1.9 0.6 2.0 0.3 2.0 0.4 2.0 0.6 2.1 0.6 2.3 0.5 2.7 0.8 2.9 0.5 3.0 0.7 3.1 1.0 3.2 1.1 3.3 1.1 3.4 1.1 3.6 0.5 3.6 0.8 3.7 1.1 3.7 1.2 3.8 1.1 3.9 1.2 4.0 0.8 4.0 1.0 4.1 0.5 4.1 0.9 4.1 1.0 4.2 1.2 4.3 1.3 4.3 1.4 4.4 1.3 4.5 1.2 4.6 1.0 4.6 1.2 4.7 1.0 4.7 1.1 4.7 1.3 4.7 1.5	$\begin{array}{c cccc} O & 0 & B & 0 \\ \hline 5.2 & 0.2 \\ 5.2 & 1.6 \\ 5.2 & 1.7 \\ 5.2 & 1.8 \\ 5.4 & 1.3 \\ 5.5 & 1.5 \\ 5.5 & 1.8 \\ 5.5 & 1.9 \\ 5.5 & 2.0 \\ 5.7 & 1.1 \\ 5.7 & 1.8 \\ 5.8 & 1.4 \\ 5.8 & 2.0 \\ 5.9 & 1.0 \\ 5.9 & 1.0 \\ 5.9 & 1.0 \\ 5.9 & 1.2 \\ 5.9 & 1.8 \\ 5.9 & 1.9 \\ 5.9 & 1.0 \\ 5.9 & 1.2 \\ 5.9 & 1.8 \\ 5.9 & 1.9 \\ 5.9 & 1.0 \\ 5.9 & 1.2 \\ 5.9 & 1.8 \\ 5.9 & 1.9 \\ 5.9 & 1.0 \\ 5.9 & 1.0 \\ 5.9 & 1.0 \\ 6.0 & 1.5 \\ 6.0 & 1.8 \\ 6.1 & 1.9 \\ 6.2 & 1.0 \\ 6.2 & 1.8 \\ 6.1 & 1.9 \\ 6.2 & 1.0 \\ 6.3 & 0.9 \\ 6.3 & 1.8 \\ 6.4 & 1.0 \\ 6.4 & 1.5 \\ 6.4 & 2.1 \\ 6.7 & 1.5 \\ 6.7 & 1.8 \\ 6.8 & 0.9 \\ 6.8 & 1.5 \\ 6.8 & 2.4 \\ 6.9 & 1.0 \\ 6.9 & 1.6 \\ 6.9 & 2.2 \\ 7.0 & 1.6 \\ 7.0 & 2.0 \\ \end{array}$	O Ø/B Ø 7.9 1.8 8.0 2.0 8.2 1.8 8.2 2.5 8.3 1.6 8.4 2.9 8.5 1.3 8.7 2.5 8.7 2.6 8.8 1.5 8.9 0.5 8.9 0.5 8.9 2.5 9.0 1.6 9.1 2.5 9.3 2.4 9.3 3.0 9.6 2.1 9.7 2.5 9.8 2.9 10.0 2.3 10.0 3.1 10.0 3.8 10.2 1.5 10.2 2.7 10.3 2.8 10.9 2.7 10.3 2.8 10.9 2.7 10.3 2.8 10.9 2.7 10.3 2.8 10.9 2.7 10.3 2.8 10.9 2.7 10.3 3.0 11.1 3.1 11.1 3.9 11.3 3.6 11.4 2.5 11.6 1.5 12.2 3.3 12.2 3.4 12.3 3.0 12.5 4.1 12.6 1.2 13.6 4.6 13.8 2.5	* $\bigcirc \oslash/B \oslash$ 1.5 0.3 1.7 0.4 2.3 0.5 2.4 0.5 2.4 0.6 2.7 0.5 2.7 0.6 2.7 0.7 2.8 0.7 2.9 0.7 3.2 0.7 3.2 0.7 3.3 0.8 3.5 0.9 3.6 0.7 3.6 1.1 3.8 0.8 3.8 1.0 3.9 0.7 4.0 1.0 4.0 1.1 4.1 0.7 4.1 0.8 4.2 0.7 4.2 0.8 4.2 1.2 4.3 0.7 4.3 0.8 4.3 1.2 4.5 1.3 4.6 1.0 4.7 0.7 4.8 0.8 4.8 1.0 4.8 1.1 4.8 1.2 4.8 1.5 5.0 1.1 5.0 1.2	$\begin{array}{c} 0 \ \ensuremath{\varnothing 0 } \ensuremath{\emptyset 0 } \\ \hline 5.5 & 1.3 \\ 5.6 & 1.0 \\ 5.6 & 1.3 \\ 5.6 & 1.5 \\ 5.7 & 1.2 \\ 5.8 & 1.2 \\ 5.8 & 1.5 \\ 5.9 & 1.5 \\ 6.0 & 1.3 \\ 6.0 & 1.4 \\ 6.1 & 1.8 \\ 6.2 & 1.7 \\ 6.3 & 1.7 \\ 6.4 & 1.2 \\ 6.4 & 1.6 \\ 6.5 & 1.7 \\ 6.4 & 1.2 \\ 6.4 & 1.6 \\ 6.5 & 1.7 \\ 6.4 & 1.2 \\ 6.4 & 1.6 \\ 6.5 & 1.7 \\ 6.4 & 1.2 \\ 6.4 & 1.6 \\ 6.5 & 1.7 \\ 6.4 & 1.2 \\ 6.4 & 1.6 \\ 6.5 & 1.7 \\ 6.4 & 1.2 \\ 6.4 & 1.5 \\ 7.8 & 2.0 \\ 7.9 & 1.5 \\ 7.8 & 2.0 \\ 7.9 & 1.5 \\ 7.8 & 2.0 \\ 7.9 & 1.5 \\ 7.8 & 2.0 \\ 7.9 & 1.5 \\ 8.0 & 2.3 \\ 8.3 & 1.7 \\ 8.3 & 2.3 \\ 8.3 & 2.3 \\ 8.4 & 1.9 \\ 8.4 & 2.2 \\ 8.5 & 1.5 \\ 8.6 & 1.9 \\ 8.6 & 2.0 \\ 8.6 & 2.3 \\ 8.8 & 1.2 \\ 8.8 & 1.5 \\ 8.8 & 1.8 \\ \end{array}$	$\begin{array}{c cccc} O & \emptyset / B & \emptyset \\ \hline 10.0 & 1.8 \\ 10.0 & 3.1 \\ 10.2 & 2.7 \\ 10.3 & 2.3 \\ 10.5 & 1.1 \\ 10.5 & 1.5 \\ 10.7 & 2.5 \\ 11.6 & 2.5 \\ 11.7 & 3.7 \\ 11.8 & 3.5 \\ 11.7 & 3.7 \\ 11.8 & 3.8 \\ 11.9 & 3.9 \\ 12.6 & 3.6 \\ 12.9 & 4.1 \\ 13.3 & 3.1 \\ 13.3 & 3.5 \\ 14.2 & 3.6 \\ 14.3 & 3.5 \\ 15.8 & 3.8 \\ 16.9 & 4.6 \\ \end{array}$	* O Ø/B Ø 1.1 0.3 1.2 0.2 1.2 0.3 1.4 0.3 1.5 0.4 1.6 0.3 1.8 0.6 1.9 0.6 2.0 0.6 2.1 0.5 2.1 0.6 2.6 0.8 2.7 0.5 2.9 0.7 3.0 1.1 3.1 1.1 3.2 1.0 3.4 0.5 3.4 0.8 3.5 1.1 3.5 1.2 3.7 1.1 3.8 0.5 3.8 0.8 3.8 0.9 3.9 0.9 3.9 0.9 3.9 1.2 4.0 1.3 4.2 1.2 4.2 1.3 4.2 1.2 4.2 1.3 4.2 1.2 4.4 0.9 4.4 1.0 4.5 1.0 4.5 1.0 4.5 1.5 4.6 1.6 4.7 1.4	$\begin{array}{c} 0 \ \ensuremath{\varnothing}{0} \ \ensuremath{\delta}{0} \ \ensuremath{B}{0} \ \ensuremath{\delta}{0} \ \ensuremath{S}{1} \ \ensuremath{1}{1} \ \ensuremath{S}{1} \ \ensuremath{S}{$	O Ø/B Ø 8.5 2.5 8.7 2.3 9.0 2.0 9.1 2.4 9.2 2.8 9.4 2.9 9.7 2.7 9.7 3.7 9.8 3.7 9.9 3.9 10.2 2.7 10.2 3.8 10.3 3.2 10.4 3.8 10.5 3.0 10.6 3.5 10.7 2.5 10.7 3.7 10.9 1.5 11.0 3.0 11.5 3.3 11.7 4.0 11.9 1.1 12.0 3.9 12.8 4.5 13.0 2.4 14.1 4.5 15.3 4.8 17.7 4.0 18.3 4.1	* $\bigcirc \oslash/B \oslash$ 1.5 0.3 1.7 0.4 2.1 0.5 2.3 0.5 2.3 0.6 2.4 0.6 2.5 0.5 2.5 0.6 2.5 0.7 2.6 0.6 2.7 0.6 2.8 0.8 3.0 0.7 3.1 0.8 3.3 0.9 3.4 0.6 3.4 1.0 3.4 1.2 3.5 0.8 3.5 1.0 3.6 0.8 3.7 0.7 3.7 0.9 3.8 0.6 3.8 0.9 3.8 1.1 3.9 0.6 3.9 0.8 3.9 1.1 4.0 0.7 4.0 1.2 4.1 0.7 4.0 1.2 4.1 0.7 4.2 1.3 4.3 0.9 4.4 0.7 4.5 0.8 4.5 0.9 4.5 1.1	$\begin{array}{c} 0 \ \ensuremath{\varnothing }{0} \ \ensuremath{\emptyset }{0} \ \ensuremath{0}{1} \ \ensuremath{\ensuremath{0}{1} \ \ensuremath{0}{1} \ \ensuremath{0}{1} \ \$	$\begin{array}{c cccc} O & \emptyset / B & \emptyset \\ \hline 8.7 & 2.2 \\ 8.8 & 2.5 \\ 9.1 & 2.5 \\ 9.2 & 2.1 \\ 9.3 & 2.8 \\ 9.4 & 1.8 \\ 9.4 & 3.0 \\ 9.5 & 1.5 \\ 9.8 & 1.1 \\ 9.8 & 1.4 \\ 10.0 & 2.4 \\ 10.0 & 2.4 \\ 10.0 & 2.5 \\ 11.0 & 3.6 \\ 11.1 & 3.7 \\ 11.2 & 3.8 \\ 11.0 & 3.5 \\ 11.0 & 3.6 \\ 11.1 & 3.7 \\ 11.2 & 3.8 \\ 11.5 & 3.3 \\ 11.8 & 3.5 \\ 12.5 & 3.0 \\ 12.5 & 3.4 \\ 12.5 & 3.8 \\ 13.0 & 3.5 \\ 13.2 & 3.6 \\ 13.2 & 4.0 \\ 13.4 & 3.4 \\ 14.2 & 4.0 \\ 14.8 & 3.7 \\ 15.0 & 3.6 \\ 15.8 & 4.5 \\ \end{array}$	
4.8 1.0 4.8 1.5 4.9 1.7 5.0 1.4	7.22.37.42.67.51.17.62.4	15.04.615.14.615.93.316.34.9	5.1 1.0 5.2 1.2 5.2 1.3 5.4 1.2	9.1 2.1 9.4 2.5 9.6 2.9 9.7 2.6		4.7 1.7 4.9 1.6 4.9 1.7 4.9 1.8	8.2 2.48.2 2.68.4 0.58.4 2.5		4.5 1.2 4.5 1.5 4.7 1.1 4.7 1.2	 8.1 2.3 8.2 1.5 8.2 1.8 8.3 1.2 		
5.0 1.8	7.7 2.5		5.5 1.2	9.9 2.8		5.1 1.2	8.5 1.6		4.8 0.9	8.5 1.5		

* $O \emptyset = Outer diameter in mm$

 $B \mathcal{Q} = Bore \ diameter \ in \ mm$

MULTI-BORE INSULATION RODS Tools available

A member of the Morgan Crucible Company Plc

6-bore rods 8-bore rods 10-bore rods * 0Ø 6×880 0Ø 6×880 * 0Ø 8×80 0Ø 8×80 0Ø 8×80 0Ø 1380 0Ø 10×80 0Ø 0Ø 0Ø 10×80 0Ø 0Ø 0Ø 10×80 0Ø	ALSINT 99.7 TYPE C 799 / PYTHAGORAS TYPE C 610										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6-bore rods 8-bor							10-bore rods			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0000				0000	
1.5 0.25 1.5 0.26 4.2 0.75 4.0 0.75 5.3 0.40 5.0 0.40 5.2 0.80 4.4 100 4.5 1.10 6.0 0.55 5.0 0.60 5.7 0.65 5.4 0.65 5.0 1.10 5.1 1.20 6.4 1.00 6.0 0.55 5.0 0.60 6.0 7.5 1.10 6.5 1.10 5.6 0.70 1.10 6.5 1.10 6.5 1.10 6.5 1.10 6.5 1.10 6.5 1.10 1.2.7 2.10 12.0 2.00 8.0 0.70 7.5 0.70 5-bore rods with centre bore 6-bore rods with centre bore 6-bore rods with centre bore 7-bore rods with centre bore 7-bore rods with centre bore 7-bore rods with centre bore 0.00 7 × B.0 0.00 1.0 1.1	* 0 Ø 6 x B Ø	ОØ	6 x B Ø	* 0Ø	8 x B Ø	ОØ	8 x B Ø	* 0Ø	10 x B Ø	ОØ	10 x B Ø
5-bore rods with centre bore 6-bore rods with centre bore 7-bore rods with centre bore * 0.0 5 × B.0 0.0 5 × B.0 * 0.0 6 × B.0 * 0.0 6 × B.0 * 0.0 7 × B.0 0.0 7 × B.0 * 0.0 5 × B.0 0.0 5 × B.0 * 0.0 6 × B.0 0.0 6 × B.0 * 0.0 7 × B.0 0.0 7 × B.0 2.7 0.35 2.6 0.35 2.1 0.4 2.0 0.05 3.0 0.3 0.0 7 × B.0 4.5 0.5 4.3 0.5 4.4 9.0 0.55 4.6 0.55 3.0 1.1 1.0 1.0 1.0 1.0 3.0 0.3 <td>$\begin{array}{cccc} 1.5 & 0.25 \\ 4.0 & 0.75 \\ 4.4 & 1.00 \\ 5.0 & 1.10 \\ 6.0 & 1.20 \\ 8.0 & 1.20 \end{array}$</td> <td>1.5 4.0 4.5 5.1 6.0 7.5</td> <td>0.25 1.10 1.10 1.20 1.10 1.20</td> <td>4.2 4.8 6.0 6.4 7.5 12.7</td> <td>0.75 0.80 0.55 1.00 0.80 2.10</td> <td>4.0 4.5 5.0 6.0 7.0 12.0</td> <td>0.75 0.80 0.60 1.00 0.80 2.00</td> <td>5.3 5.5 5.7 6.0 7.0 8.0</td> <td>0.40 0.80 0.65 0.75 1.10 0.70</td> <td>5.0 5.2 5.4 5.6 6.5 7.5</td> <td>0.40 0.80 0.65 0.75 1.10 0.70</td>	$\begin{array}{cccc} 1.5 & 0.25 \\ 4.0 & 0.75 \\ 4.4 & 1.00 \\ 5.0 & 1.10 \\ 6.0 & 1.20 \\ 8.0 & 1.20 \end{array}$	1.5 4.0 4.5 5.1 6.0 7.5	0.25 1.10 1.10 1.20 1.10 1.20	4.2 4.8 6.0 6.4 7.5 12.7	0.75 0.80 0.55 1.00 0.80 2.10	4.0 4.5 5.0 6.0 7.0 12.0	0.75 0.80 0.60 1.00 0.80 2.00	5.3 5.5 5.7 6.0 7.0 8.0	0.40 0.80 0.65 0.75 1.10 0.70	5.0 5.2 5.4 5.6 6.5 7.5	0.40 0.80 0.65 0.75 1.10 0.70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5-bore rods v	with centre k	oore	6-b	ore rods w	ith centre	e bore	7-k	ore rods w	ith centre	bore
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0 0 0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*ОØ 5хВØ	ОØ	5 x B Ø	*0Ø	6 x B Ø	ОØ	6 x B Ø	*0Ø	7 x B Ø	ОØ	7 x B Ø
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.70.354.50.59.41.0	2.6 4.3 8.7	0.35 0.5 1.0	2.1 4.9 5.4	0.4 0.55 1.1	2.0 4.6 5.0	0.4 0.55 1.1	2.0 3.2 17.0	0.25 0.3 4.0	1.9 3.0 16.0	0.25 0.3 3.7
$\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$	5-	bore rods w and 4 sma	ith centre k aller bores	oore		7-bore rods with centre bore and 6 smaller bores					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\left(\begin{array}{c} \\ \\ \end{array} \right)$)						\mathbf{O}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*ОØ СВØ	4 x B Ø	ОØ	CBØ	4 x B Ø	*0Ø	CB Ø	6 x B Ø	ОØ	CBØ	6 x B Ø
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ccc} 3.0 & 0.9 \\ 4.0 & 1.5 \\ 5.0 & 2.4 \\ 8.5 & 4.0 \\ 9.0 & 3.2 \end{array}$	0.30 0.75 0.75 0.80 1.15	2.8 4.5 7.7 8.0 9.2	0.9 1.2 2.9 3.7 4.0	0.50 0.75 1.20 0.80 1.10	3.7 4.0 5.0 11.0 13.3	1.8 1.8 1.8 4.3 4.4	0.45 0.45 0.75 2.10 2.40	3.5 4.0 5.0 10.4 12.5	1.7 1.7 1.8 4.0 4.1	0.45 0.75 0.70 2.00 2.30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13-			Oval 2-	oore rods						
* OØ CBØ 12 x BØ OØ CBØ 12 x BØ W / H x BØ W / H x DØ 8.6 4.4 0.3 7.7 4.1 0.3 3.0 / 2.0 x 0.7 2.3 / 1.4 x 0.7 9.6 2.1 1.2 9.0 1.9 1.2 4.5 / 3.0 x 1.5 3.0 / 2.0 x 1.0 9.6 2.1 1.1 9.0 2.0 1.1 7.5 / 5.0 x 2.2 4.0 / 2.7 x 1.0 9.6 2.1 1.1 9.0 2.0 1.1 7.5 / 5.0 x 2.2 4.0 / 2.7 x 1.0 115 / 7.2 x 3.9 4.6 / 3.3 x 1.5								НСС	W		
8.6 4.4 0.3 7.7 4.1 0.3 3.0 / 2.0 x 0.7 2.3 / 1.4 x 0.7 9.6 2.1 1.2 9.0 1.9 1.2 4.5 / 3.0 x 1.5 3.0 / 2.0 x 1.0 9.6 2.1 1.1 9.0 2.0 1.1 7.5 / 5.0 x 2.2 4.0 / 2.7 x 1.0 9.6 2.1 1.1 9.0 2.0 1.1 7.5 / 5.0 x 2.2 4.0 / 2.7 x 1.0 11.5 / 7.2 x 3.9 4.6 / 3.3 x 1.5	*ОØ СВØ	12 x B Ø	ОØ	CBØ	12 x B Ø	W	/ H	хВØ	W /	Н	x DØ
11.3 / 1.2 X 3.7 4.0 / 3.3 X 1.3 12.0 / 8.0 X 4.0 11.5 / 6.3 X 4.2	8.6 4.4 9.6 2.1 9.6 2.1	0.3 1.2 1.1	7.7 9.0 9.0	4.1 1.9 2.0	0.3 1.2 1.1	3.0 4.5 7.5 11.5 12.0	/ 2.0 / 3.0 / 5.0 / 7.2 / 8.0	x 0.7 x 1.5 x 2.2 x 3.9 x 4.0	2.3 / 3.0 / 4.0 / 4.6 / 11.5 /	1.4 2.0 2.7 3.3 6.3	x 0.7 x 1.0 x 1.0 x 1.5 x 4.2

Morgan Morgan Advanced Ceramics

DIN MEASUREMENTS

ivieasurements for ceramic s	sneath tui	bes and i	nsulatio	n componei	nts for therm	oeleme	ents ad	ccording	to DIN 43724	and DIN 43	/25	
> b <	4-bore insulation rods according to DIN 43725				Wire Ø	1-bore insulation rods according to DIN 43725				Wire Ø	ð	
	Outer Ø (d ₂) in mi) Bo m (d ₃)	ore Ø in mm	Length in mm	Ø in mm	Oute (d ₁) in	er Ø i mm	Inner Ø in mm	ð Length in mm	Ø in mm	1	
\rightarrow d_2				205 275		2.7 :	<u>+</u> 0.2	1.7	5, 10, 25,	50 1.0 and 1	.38	
Materials for insulation rods	5.5		1.2	380 560 770	≤ 0.8	4.0 :	± 0.3	2.0	5, 10, 25,	50 1.38		
C 610 or C 799 DIN EN 60672	8.5		1.5	1060 1460 2060	≤ 0.8 6.0±		± 0.3	4.0	5, 10, 25,	50 3.0		
	TABLE 1: ceramic sheath tubes DIN 43724											
	DIN EN 60672	Outer Ø (d ₁) in mm	Inner Ø (d ₂) in m	ð Le	Length (L) in mm		Thermal shock resistance		Permeability	Max. permiss continuous te	sible emp.	
		10	7	200, 270	, 375, 530, 740), 1030						
	C 610	15	11	530, 740	, 1030, 1430, 2030		good		gastight	2732 °F 1500 °C	2732 °F 1500 °C	
		24	19	530, 740	, 1030, 1430			°				
	C 530	26	18	530, 740	, 1030, 1430		ver	y good	porous	2912°F/160	0°C	
		10	6	200, 270	, 375, 530							
	C 799	15	10	530, 740	, 1030		me	edium	gastight	2912 °F 1600 °C	;	
V V		24	18	530, 740	, 1030, 1430							

DESIGN

Unglazed. Admissible tolerance of the wall thickness is in compliance with DIN 40680 Part 1, degree of accuracy: Coarse. Admissible deflection is in compliance with DIN 40680 Part 2, degree of accuracy: Fine, with the following specifications: A straight rod, diameter 0.8 x (d1-2s), must be able to be inserted to the bottom of the sheath tube. The rounded bottom of the sheath tube uniformly becomes the cylindrical section of the sheath tube.

REQUIREMENTS

Thermal shock resistance:

No visible damage after test implementation.

Dimensional stability: Original straightness after test implementation.

Gastightness: No air is released during testing: only valid for the sheath tubes labelled gastight in Table 1.

TESTS

Thermal shock resistance:

The sheath tube is inserted with the closed end into a 40 mm internal diameter tube furnace at

a constant rate (Table 2). The furnace is heated to the maximum permissible continuous temperature of the sheath tube. The sheath tube must not come in contact with the tube furnace, therefore a vertical setup of the tube furnace is recommended. After a minimum of 20 minutes holding time, the sheath tube is removed at the same rate and is hung freely in order to cool in calm air.

TABLE 2							
Diameter d1 in mm	Insertion rate cm/min						
10	100						
15	50						
24 and 26	1						

Dimensional stability:

The sheath tube is horizontally clamped into the tube furnace used for thermal shock resistance testing and is then heated to the maximum permissible continuous temperature. This procedure lasts for 30 minutes.

Gastightness:

The sheath tube is exposed to an inner overpressure of 2 bar, and then submersed in water for one minute.

Note: The tests should be conducted in the abovementioned order. The thermal shock resistance tests and dimensional stability tests can be conducted simultaneously when the tube furnace is setup horizontally.

GUIDELINES

for the selection of sheath tube materials according to DIN 43724, Paragraph 7:

- Alkalis- and hydrofluoric acid-free gases up to 2732 °F / 1500 °C: Type C 610
- Contact with alkali vapours up to 2732 °F / 1500 °C: Type C 799
- Gases of all kinds, if inner tubes are gastight, up to 2912 °F / 1600 °C: Type C 530
- Melting glass up to 2732 °F / 1500 °C: Type C 799

(not general specifications; reference values only)

6

TOLERANCES ACCORDING TO DIN 40680

A member of the Morgan Crucible Company Plc

Diameter and deflection tolerances without grinding according to DIN 40680											
Nominal Ø	Accura	acv (admissit	ole tolerances	s in mm)	Nominal length Accuracy (admissible deflection fain mm)						
or length in mm	02	irse	me	dium	in mm	coarse	mer	lium			
or longer in thin		150	me	aidin		course					
up to 4	±	0.4	±	0.15	up to 30	1.7	1.7 0.15				
above 4 up to 6	±	0.6	±	0.20	above 30 up to 40	1.8	0.	20			
above 6 up to 8	±	0.7	±	0.25	above 40 up to 50	1.9	0.	25			
above 8 up to 10	±	0.8	±	0.30	above 50 up to 60	2.0	0.	30			
above 10 up to 13	±	1.0	± 0.35 above 60 up to 70 2.1					35			
above 13 up to 16	±	1.2	±	0.40	.40 above 70 up to 80 2.1						
above 16 up to 20	±	1.2	±	0.45	above 80 up to 90	2.2	0.	45			
above 20 up to 25	±	1.5	±	0.50	above 90 up to 100	2.3	0.	50			
above 25 up to 30	±	1.5	±	0.55	above 100 up to 110	2.4	0.	55			
above 30 up to 35	±	2.0	±	0.60	above 110 up to 125	2.5	0.	65			
above 35 up to 40	±	2.0	±	0.65	above 125 up to 140	2.6	0.	70			
above 40 up to 45	±	2.0	±	0.70	above 140 up to 15	2.7	0.	80			
above 45 up to 50	±	2.5	±	0.80	above 155 up to 170	2.9	0.	85			
above 50 up to 55	±	2.5	±	0.90	above 170 up to 18	3.0	0.	90			
above 55 up to 60	±	2.5	±	1.00	above 185 up to 200	3.1	1.	00			
above 60 up to 70	±	3.0	±	1.20	above 200 up to 250	3.5	1.	25			
above 70 up to 80	±	3.5	±	1.40	above 250 up to 300	3.9	1.	50			
above 80 up to 90	±	4.0	±	1.60	above 300 up to 350	4.3	1.	75			
above 90 up to 100	±	4.5	±	1.80	above 350 up to 400	4.7	2.	00			
above 100 up to 110	±	5.0	±	2.00	above 400 up to 450	5.1	2.	25			
above 110 up to 125	±	5.5	±	2.20	above 450 up to 500	5.5	2.	50			
above 125 up to 140	±	6.0	±	2.50	above 500 up to 600	6.3	3.	00			
above 140 up to 155	±	6.5	±	2.80	above 600 up to 700	7.1	3.	50			
above 155 up to 170	±	7.0	±	3.00	above 700 up to 800	7.9	4.	4.00			
above 170 up to 185	±	7.5	±	3.40	above 800 up to 900	8.7	50				
above 185 up to 200	±	8.0	±	3.80	above 900 up to 1000	9.5	5.	00			
above 200 up to 250	±	9.0	±	4.20	above 1000	above 1000 1.5 + 0.8 % · 1 0.5 %					
above 250 up to 300	± 1	0.0	±	4.60	Riagon contact up for a	triatar talarangag					
above 300 up to 350	± 1	1.0	±	5.00	Please contact us for s	Incler lolerances.					
above 350 up to 400	± 1	2.0	±	5.50	Monufacturing process		Degree of	faccuracy			
above 400 up to 450	± 1	3.0	±	6.10	Manufacturing process	coarse	medium				
above 450 up to 500	± 1	4.0	±	6.80			-				
above 500 up to 600	± 1	5.0	±	7.60	Casted, turned, extrud	ed for parts with an	Common				
above 600 up to 700	± 1	6.0	±	8.30	envelope size of 30 mr	h and higher	application				
above 700 up to 800	± 1	7.5	±	9.00	E 1 1 6 1 1						
above 800 up to 900	± 1	9.0	±	9.50	Extruded for parts with	an envelope size up to 30		Common			
above 900 up to 1000	± 2	0.0	± 1	0.00	mm, non-metered pres	sed, metered semi-moist		application			
above 1000	±	0.02 · d	±	0.01 · d	pressea, meterea ary p	ressed, white machined					
Accuracy	COa	arse	med	dium							
DIN EN 60672 Type	C 610	C 799	C 610	C 799							
Manufacturing processes							\sim				
Casted	•	•					<u> </u>				
Turped	-	-				fa	<u> </u>				
	•				· · · · · · · · · · · · · · · · · · ·	/////		$\overline{}$			
Extruded envelope size	•	•									
30 mm and nigher						I					
Extruded envelope size					Defle	ction of a cylindrical form	ed part				
up to 30 mm			•	•							
Non-metered pressed			•		l N						
Metered semi-moist pressed		•									
Metered dry pressed		-		-	+1-		1				
White machined				•		fa	_ 71.				
white machined			•	•			7/1/1	7,			
The values for accuracy: (Course are no	ot applicable	to the first ma	anufacturing.				/ /			
Special agreements are re	equired.										
Customary manufacturing process					Deflect	ion of a non-cylindrical fo	rmed part				

TUBES

Excellent Surface Finish FUSED SILICA ROLLERS

LABORATORY PORCELAIN

Long Service Life

High Performance

SPECIALITIES

Pyrosales Pty Ltd 4 Wordie Place Padstow NSW 2211 Australia

Ph: 61 2 9790 1988 Fax: 61 2 9790 1040 Email: sales@pyrosales.com.au Website: www.pyrosales.com.au

Teplitzer Str. 27 · D-84478 Waldkraiburg

Tel. +49-(0)8638 60 04 60 Fax +49-(0)8638 60 04 317 info@haldenwanger.de www.haldenwanger.de

Haldenwanger forms part of the Morgan Advanced Ceramics group, which is a global business unit of the Morgan Crucible Company Plc.

Morgan MorganAdvancedCeramics www.morganadvancedceramics.com

beat the heat

www.haldenwanger.de